MATHEMATICS 218

SPRING SEMESTER 2008-09

FINAL EXAMINATION-SAMPLE SOLUTION

Time: 120 minutes
Date: June 3, 2009
Name:
ID Number:
Circle your section number in the table below:

Instructors	Ejeili	Fuleihan	Itani	Karam	El Khoury	Lyzzaik	Nassif	Tannous
Section	7	3	11	1	10	6	2	4
Section		5		12		8	9	

QUESTION	GRADE
1	$/ 25$
2	$/ 20$
3	$/ 20$
4	$/ 20$
5	$/ 20$
6	$/ 20$
7	$/ 25$
8	$/ 30$
9	$/ 200$

Answer the following nine sets of questions on the allocated pages; the back of pages may be used if needed

2

1. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ the transformation defined by

$$
T(x, y, z, w)=(x+y-z+w, 2 x+y+4 z+w, 3 x+y+9 z) .
$$

(a) Show that T is a linear transformation.
(4 points)
Solution. T is a linear transformation since $x+y-z+w, 2 x+y+4 z+w$, and $3 x+y+9 z$ are linear functions in $x . y$, and z.
(b) Find the standard matrix $[T]$.
(5 points)

Solution.

$$
[T]=\left[\begin{array}{cccc}
1 & 1 & -1 & 1 \\
2 & 1 & 4 & 1 \\
3 & 1 & 9 & 0
\end{array}\right]
$$

(c) Find bases for the kernel of and range of T.
(12 points)
Solution. We have:

$$
\begin{aligned}
{[T] } & =\left[\begin{array}{cccc}
1 & 1 & -1 & 1 \\
2 & 1 & 4 & 1 \\
3 & 1 & 9 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 1 & -1 & 1 \\
0 & -1 & 6 & -1 \\
0 & -2 & 12 & -3
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
1 & 1 & -1 & 1 \\
0 & -1 & 6 & -1 \\
0 & 0 & 0 & -1
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 5 & 0 \\
0 & 1 & -6 & 1 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 5 & 0 \\
0 & 1 & -6 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Thus the kernel of T consists of all vectors (x, y, z, w), where $x=$ $-5 s, \quad y=6 s, \quad z=s, w=0$, or,

$$
\operatorname{kernel}(T)=\left\{\left[\begin{array}{c}
-5 s \\
6 s \\
s \\
0
\end{array}\right]: s \in \mathbb{R}\right\}=\left\{\left[\begin{array}{c}
-5 \\
s \\
6 \\
1 \\
0
\end{array}\right]: s \in \mathbb{R}\right\} ;
$$

Hence a basis for $\operatorname{kernel}(T)$ is the singleton

$$
\left\{\left[\begin{array}{c}
-5 \\
6 \\
1 \\
0
\end{array}\right]\right\}
$$

On the other hand, a basis for the range of T consists of the set

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} .
$$

(d) Find the rank and nullity of T.

Solution. It follows from (c) that rank $(T)=3$ nullity $(T)=1$.
2. Let $T: P_{2} \rightarrow \mathbb{R}^{3}$ be the function defined by the formula

$$
T(\mathbf{p}(x))=\left[\begin{array}{c}
\mathbf{p}(1) \\
\mathbf{p}(2) \\
\mathbf{p}(3)
\end{array}\right] ;
$$

here P_{2} is the vector space of all real polynomials of degree at most 2 .
(a) Show that T is a linear transformation.

Solution. Since for any $\mathbf{p}, \mathbf{q} \in P_{2}$ and $k \in \mathbb{R}$,
$T(\mathbf{p}(x)+\mathbf{q}(x))=\left[\begin{array}{c}\mathbf{p}(1)+\mathbf{q}(1) \\ \mathbf{p}(2)+\mathbf{q}(2) \\ \mathbf{p}(3)+\mathbf{3}(3)\end{array}\right]=\left[\begin{array}{c}\mathbf{p}(1) \\ \mathbf{p}(2) \\ \mathbf{p}(3)\end{array}\right]+\left[\begin{array}{l}\mathbf{q}(1) \\ \mathbf{q}(2) \\ \mathbf{q}(3)\end{array}\right]=T(\mathbf{p}(x))+T(\mathbf{q}(x))$
and

$$
T(k \mathbf{p}(x))=\left[\begin{array}{l}
k \mathbf{p}(1) \\
k \mathbf{p}(2) \\
k \mathbf{p}(3)
\end{array}\right]=k\left[\begin{array}{c}
\mathbf{p}(1) \\
\mathbf{p}(2) \\
\mathbf{p}(3)
\end{array}\right]=k T(k \mathbf{p}(x)),
$$

T is a linear transformation.
(b) Show that T is one-to-one.
(8 points)
Solution. We show that $\operatorname{kerT}=\{0\}$. Note that the general form of a polynomial in P_{2} is $a x^{2}+b x+c$, where $a, b, c \in \mathbb{R}$. Suppose

$$
T\left(a x^{2}+b x+c\right)=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \text { or }\left[\begin{array}{c}
a+b+c \\
a+2 b+4 c \\
a+3 b+4 c
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

This yields the linear homogeneous system of equations

$$
\begin{array}{r}
a+b+c=0 \\
a+2 b+4 c=0 \\
a+3 b+9 c=0
\end{array}
$$

Since

$$
\operatorname{det}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9
\end{array}\right]=2 \neq 0
$$

the system admits only the trivial solution $a=b=c=0$; hence $\operatorname{kerT}=\{0\}$ and T is one-to-one.
(c) Show that T is onto.
(4 points)
Solution. Since $\operatorname{dimP}_{2}=\operatorname{dim} \mathbb{R}^{3}=3$ and T is one-to-one linear transformation, T is also onto.
3. Let P_{3} be the set of all polynomials of degree at most 3, and let

$$
W=\left\{a x^{3}+b x^{2}+c x+d: b+c+d=0\right\} .
$$

(a) Show that W is a subspace of P_{3}.
(6 points)
Solution. Let $a_{1} x^{3}+b_{1} x^{2}+c_{1} x+d_{1}, a_{2} x^{3}+b_{2} x^{2}+c_{2} x+d_{2} \in W$. Then $b_{1}+c_{1}+d_{1}=b_{2}+c_{2}+d_{2}=0$; consequently, $b_{1}+b_{2}+c_{1}+c_{2}+d_{1}+d_{2}=0$. This implies that

$$
\begin{aligned}
\left(a_{1} x^{3}+b_{1} x^{2}+c_{1} x+d_{1}\right) & +\left(a_{2} x^{3}+b_{2} x^{2}+c_{2} x+d_{2}\right) \\
& =\left(a_{1}+a_{2}\right) x^{3}+\left(b_{1}+b_{2}\right) x^{2} \\
& +\left(c_{1}+c_{2}\right) x+\left(d_{1}+d_{2}\right) \in W
\end{aligned}
$$

Also, for any real k,

$$
k\left(a_{1} x^{3}+b_{1} x^{2}+c_{1} x+d_{1}\right)=k a_{1} x^{3}+k b_{1} x^{2}+k c_{1} x+k d_{1} \in W
$$

since $k b_{1}+k c_{1}+k d_{1}=k\left(b_{1}+c_{1}+d_{1}\right)=0$.
(b) Find a basis S for W.

Solution. We may write
$W=\left\{a x^{3}+b x^{2}+c x-b-c=a x^{3}+b\left(x^{2}-1\right)+c(x-1): a, b, c \in \mathbb{R}.\right\}$
Hence,

$$
P_{3}=\operatorname{span}\left\{x^{3}, x^{2}-1, x-1 .\right\}
$$

But $\left\{x^{3}, x^{2}-1, x-1\right\}$ is linearly independent since

$$
a x^{3}+b\left(x^{2}-1\right)+c(x-1) \equiv 0
$$

means

$$
a x^{3}+b x^{2}+c x-b-c \equiv 0
$$

and consequently $a=b=c=0$. Hence $S=\left\{x^{3}, x^{2}-1, x-1\right\}$.
(c) Give one vector in P_{3} but not in W.

Solution. Any polynomial $a x^{3}+b x^{2}+c x+d$, where $b+c+d \neq 0$ is not in W; for instance the polynomial $x^{3}+x^{2}+x+1$.
(d) Complete S to a basis for P_{3}.
(6 points)
Solution. We show that $B=\left\{x^{3}, x^{2}-1, x-1,1\right\}$ is a basis for P_{3}. Since P_{3} has dimension 4 , it suffices to show that B is linearly independent. This holds since

$$
a x^{3}+b\left(x^{2}-1\right)+c(x-1)+d .1 \equiv 0
$$

means

$$
a x^{3}+b x^{2}+c x-b-c+d \equiv 0
$$

and consequently $a=b=c=d=0$.
4. Let

$$
A=\left[\begin{array}{cccc}
1 & 2 & -1 & 2 \\
3 & 5 & 0 & 4 \\
1 & 1 & 2 & 0
\end{array}\right]
$$

(a) Find a basis for the row space of A and a basis for its orthogonal complement.
Solution: (a) Since

$$
A=\left[\begin{array}{llll}
1 & 3 & 5 & 7 \\
2 & 0 & 4 & 2 \\
3 & 2 & 8 & 7
\end{array}\right] \equiv\left[\begin{array}{llll}
1 & 3 & 5 & 7 \\
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

a basis for the row space is $\{(1,3,5,7),(0,1,1,2)\}$.
Since the orthogonal complement of the row space of A is the nullspace of A, the latter consists of all the vectors $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ where

$$
x_{1}=-2 s-t, x_{2}=-s-2 t, x_{3}=s, x_{4}=t, s, t \in \mathbb{R}
$$

Thus the nullspace of A, or, the orthogonal complement of the row space of A is the set of all vectors

$$
\begin{aligned}
\left\{\left[\begin{array}{c}
-2 s-t \\
-s-2 t \\
s \\
t
\end{array}\right]: s, t \in \mathbb{R}\right\} & =\left\{s\left(\begin{array}{c}
-2 \\
-1 \\
1 \\
0
\end{array}\right)+t\left(\begin{array}{c}
-1 \\
-2 \\
0 \\
1
\end{array}\right): s, t \in \mathbb{R}\right\} \\
& =\operatorname{span}\left\{\left[\begin{array}{c}
-2 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
-2 \\
0 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

(b) Find a subset of the column vectors of A that forms a basis for the column space of A.
(4 points)
Solution. The desired set is

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
3 \\
0 \\
2
\end{array}\right]\right\}
$$

5. Let P_{2} be the set of all polynomials of degree at most 2 , and let $\mathbf{p}(x)=a_{0}+a_{1} x+a_{2} x^{2}$ and $\mathbf{q}(x)=b_{0}+b_{1} x+b_{2} x^{2}$ be in P_{2}. Define on P_{2} the operation

$$
<\mathbf{p}, \mathbf{q}>=a_{0} b_{0}+2 a_{1} b_{1}+3 a_{2} b_{2} .
$$

(a) Show that $<,$.$\rangle is an inner product on P_{2}$.
(10 points)
Solution. Let $\mathbf{r}(x)=c_{0}+c_{1} x+c_{2} x^{2}$. Then $<., .>$ is an inner product on P_{2} since the following hold:

$$
\left.\begin{array}{l}
<\mathbf{p}, \mathbf{q}>=a_{0} b_{0}+2 a_{1} b_{1}+3 a_{2} b_{2}=b_{0} a_{0}+2 b_{1} a_{1}+3 b_{2} a_{2}=<\mathbf{q}, \mathbf{p}> \\
<\mathbf{p}+\mathbf{q}, \mathbf{r}>
\end{array}=\left(a_{0}+b_{0}\right) c_{0}+2\left(a_{1}+b_{1}\right) c_{1}+3\left(a_{2}+b_{2}\right) c_{2}, ~=a_{0} c_{0}+b_{0} c_{0}+2 a_{1} c_{1}+2 b_{1} c_{1}+3 a_{2} c_{2}+3 b_{2} c_{2}\right)
$$ for every $k \in \mathbb{R}$, and

$$
<\mathbf{p}, \mathbf{p}>=a_{0}^{2}+2 a_{1}^{2}+3 a_{2}^{2} \geq 0
$$

with equality if and only if $a_{0}=a_{1}=a_{2}=0$, or $\mathbf{p}=0$.
(b) Show that

$$
\left(a_{0} b_{0}+2 a_{1} b_{1}+3 a_{2} b_{2}\right)^{2} \leq\left(a_{0}^{2}+2 a_{1}^{2}+3 a_{2}^{2}\right)\left(b_{0}^{2}+2 b_{1}^{2}+3 b_{2}^{2}\right) .
$$

(5 points)
Solution. By the Cauchy-Schwarz inequality we have $|<\mathbf{p}, \mathbf{q}>|^{2} \leq$ $\|\mathbf{p}\|^{2}\|\mathbf{q}\|^{2}$, or the desired inequality.
(c) Determine the cosine of the angle between the polynomials

$$
\begin{equation*}
1-x+x^{2} \text { and } 1+x-x^{2} \tag{5points}
\end{equation*}
$$

Solution. Since

$$
\begin{aligned}
& \quad<1-x+x^{2}, 1+x-x^{2}>=(1)(1)+2(-1)(1)+3(1)(-1)=-4, \\
& \left\|1-x+x^{2}\right\|=\left[1+2(-1)^{2}+3(1)^{2}\right]^{1 / 2}=6^{1 / 2} \text { and }\left\|1+x-x^{2}\right\|=\left[1+2(1)^{2}+3(-1)^{2}\right]^{1 / 2}=6^{1 / 2},
\end{aligned}
$$ we have,

$\cos \left(1-x+x^{2}, 1+x-x^{2}\right)=\frac{<1-x+x^{2}, 1+x-x^{2}>}{\left\|1-x+x^{2}\right\|\left\|1+x-x^{2}\right\|}=\frac{-4}{6^{1 / 2} 6^{1 / 2}}=\frac{-2}{3}$.
6. Let

$$
A=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1 \\
1 & 2 & 0
\end{array}\right]
$$

(a) Use the Gram-Schmidt process to transform the column vectors of A to an orthonormal basis of \mathbb{R}^{3}.
Solution: Let $\mathbf{u}_{1}=(1,0,1), \mathbf{u}_{2}=(0,1,2), \mathbf{u}_{3}=(2,1,0)$. Take $\mathbf{v}_{1}=$ \mathbf{u}_{1}. Define

$$
\begin{aligned}
\mathbf{v}_{2} & =\mathbf{u}_{2}-\frac{\left\langle\mathbf{u}_{2}, \mathbf{v}_{1}\right\rangle}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1} \\
& =(0,1,2)-(1,0,1) \\
& =(-1,1,1)
\end{aligned}
$$

Also define,

$$
\begin{aligned}
\mathbf{v}_{3} & =\mathbf{u}_{3}-\left\{\frac{\left\langle\mathbf{u}_{3}, \mathbf{v}_{1}>\right.}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}+\frac{\left\langle\mathbf{u}_{3}, \mathbf{v}_{2}\right\rangle}{\left\|\mathbf{v}_{1} 2\right\|^{2}} \mathbf{v}_{2}\right\} \\
& =(2,1,0)-\left\{(1,0,1)+\frac{1}{3}(1,-1,1)\right\} \\
& =(2 / 3,4 / 3,-2 / 3) .
\end{aligned}
$$

Thus an orthonormal system resulting from $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ consists of $q_{1}=$ $\mathbf{v}_{1} /\left\|\mathbf{v}_{1}\right\|=(1 / \sqrt{2}, 0,1 / \sqrt{2}), q_{2}=\mathbf{v}_{2} /\left\|\mathbf{v}_{2}\right\|=(-1 / \sqrt{3}, 1 / \sqrt{3}, 1 / \sqrt{3})$, $q_{3}=\mathbf{v}_{3} /\left\|\mathbf{v}_{3}\right\|=(1 / \sqrt{6}, 2 / \sqrt{6},-1 / \sqrt{6})$.
(b) Find the $Q R$-decomposition of A.

Solution. (b) The $Q R$-decomposition of A is

$$
A=\left[\begin{array}{ccc}
1 / \sqrt{2} & -1 / \sqrt{3} & 1 / \sqrt{6} \\
0 & 1 / \sqrt{3} & 2 / \sqrt{6} \\
1 / \sqrt{2} & 1 / \sqrt{3} & -1 / \sqrt{6}
\end{array}\right]\left[\begin{array}{ccc}
\sqrt{2} & \sqrt{2} & \sqrt{2} \\
0 & \sqrt{3} & -\sqrt{3} / 3 \\
0 & 0 & 2 \sqrt{6} / 3
\end{array}\right] .
$$

7. Let

$$
A=\left[\begin{array}{cc}
-2 & 3 \\
1 & -2 \\
1 & -1
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]
$$

(a) Find the least squares solution of the linear system $A \mathbf{x}=\mathbf{b}$. (16 points)
Solution. The normal equation of the linear system $A \mathbf{x}=\mathbf{b}$ is

$$
\left[\begin{array}{ccc}
-2 & 1 & 1 \\
3 & -2 & -1
\end{array}\right]\left[\begin{array}{cc}
-2 & 3 \\
1 & -2 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 1 & 1 \\
3 & -2 & -1
\end{array}\right]\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]
$$

which simplifies to

$$
\left[\begin{array}{cc}
6 & -9 \\
-9 & 14
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-1 \\
3
\end{array}\right] .
$$

But the matrix on the left-hand side is invertible; hence

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{1}{3}\left[\begin{array}{cc}
14 & 9 \\
9 & 6
\end{array}\right]\left[\begin{array}{c}
-1 \\
3
\end{array}\right]
$$

and the least squares solution is

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
13 / 3 \\
3
\end{array}\right] .
$$

(b) Find the orthogonal projection of \mathbf{b} on the column space of A. (4 points)
Solution. The orthogonal projection of \mathbf{b} on the column space of A is given by

$$
A\left[\begin{array}{c}
13 / 3 \\
3
\end{array}\right]=\left[\begin{array}{cc}
-2 & 3 \\
1 & -2 \\
1 & -1
\end{array}\right]\left[\begin{array}{c}
13 / 3 \\
3
\end{array}\right]=\left[\begin{array}{c}
1 / 3 \\
-5 / 3 \\
4 / 3
\end{array}\right] .
$$

8. Let

$$
A=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

(a) Find the eigenvalues of A.

Solution. The CE of A is

$$
\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\begin{array}{ccc}
\lambda & -1 & -1 \\
-1 & \lambda & -1 \\
-1 & -1 & \lambda
\end{array}\right)=(\lambda+1)^{2}(\lambda-2)=0 .
$$

Hence the eigenvalues are $\lambda_{1}=-1$, with algebraic multiplicity 2 , and $\lambda_{2}=2$, with algebraic multiplicity 1 .
(b) Show that A is diagonalizable.
(10 points)
Solution. We find the eigenspaces of λ_{1} and λ_{2}. For the first, consider

$$
\lambda_{1} I-A=\left(\begin{array}{lll}
-1 & -1 & -1 \\
-1 & -1 & -1 \\
-1 & -1 & -1
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Hence,

$$
\operatorname{nullspace}\left(\lambda_{1} I-A\right)=\operatorname{span}\left\{\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)\right\} .
$$

In a similar manner we find

$$
\operatorname{nullspace}\left(\lambda_{2} I-A\right)=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\} .
$$

Since the set of vectors

$$
\left\{\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\}
$$

is linearly independent, the matrix A is diagonalizable.
(c) Find a matrix P that diagonalizes A and determine $P^{-1} A P$. points)
Solution. a matrix P that diagonalizes A is

$$
P=\left(\begin{array}{ccc}
-1 & -1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

and

$$
P^{-1} A P=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

(d) Find A^{10}
(5 points)
Solution. We have

$$
A=P\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 2
\end{array}\right] P^{-1}
$$

$$
=
$$

9. Indicate whether each of the following statements is TRUE (T) or FALSE (F) without justifying your answer.
(3 points each)
-(a) If A is an $n \times n$ matrix that satisfies $A A^{T}=I$, then $\operatorname{det}(A)=1$.
-(b) If $A^{2}=A$ and λ is an eigenvalue of A, then $\lambda=0$ or $\lambda=1$.
(c) If A is an $n \times n$ matrix invertible matrix, then the orthogonal complement of its nullspace is \mathbb{R}^{n}.
-(d) A square matrix is diagonalizable if and only if $\lambda=0$ is an eigenvalue.
--(e) Any linear system $A \mathbf{x}=\mathbf{b}$ satisfies $\operatorname{rank}[A \mid \mathbf{b}]=\operatorname{rank}(A)$.
-(f) Any matrix A can be expressed as a product of elementary matrices.
-(g) If $\operatorname{dim} \mathrm{V}<\operatorname{dim} \mathrm{W}<\infty$, then there exists a one-to-one linear transformation $T: V \rightarrow W$.
--(h) If a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfies $T(2,-1) \neq 0$, then it is onto.
--(i) The dimension of the vector space of 3×3 matrices is 10 .
--(j) If A is an $m \times n$ matrix, then $A^{T} A$ is invertible if and only if the set of column vectors of A is linearly independent.
